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Laplace transform is used to solve the problem of heat conduction over a finite slab. The transfer
functions relating the temperature and heat flux on the front and back surfaces of the finite slab are
developed. Although there are many competing methods for constructing the inverse Laplace transform,
we use polynomial approximation of the transfer function. Therefore, transient solutions for given
boundary conditions are easily obtained using SIMULINK. This process is much simpler than other
numerical solution methods for the heat equation. Most importantly, our method of solution allows us to
obtain, in real-time, the front surface temperature and heat flux based on the thermodynamic
measurements on the back surface. We also demonstrate the feasibility of reconstructing the front
surface temperature when sensor noise is incorporated to the back surface measurements.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

In measurements of surfaces with high temperatures, there are
situations when direct measurements of temperature and heat flux
are not feasible. A surface heated by high intensity laser is an
example. Conventional sensors can hardly withstand the intense
heat. Measurements from noncontact sensors are affected by the
out-gassing from the heated surface in the case of a composite
target. In the case of a metal target, the noncontact sensor
measurements often have large uncertainty since radiation from
a metal target deviates significantly from that of a black body.

One strategy to overcome the difficulty is to instrument sensors
on the back surface of the heated target. The sensors can function
since they are not directly exposed to the high energy input. The
objective then is to infer the front surface temperature and heat flux
from the back surface measurements. Under these circumstances,
the front surface temperature can be determined indirectly by
solving an inverse heat conduction problem [1e3] based on the
transient temperature or/and heat fluxmeasured at the back surface.

In the mathematical formulation of the inverse problem, either
temperature or heat flux can be measured at the back surface. Most
previous researchers prefer temperature measurements because
temperature can be measured with fewer uncertainties compared
to heat flux measurements [4e7]. However, recent studies have
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showed that using measured heat flux as additional information in
the formulation of an IHCP can increase the stability of the solution
and is less prone to the inherent instability of the ill-posed problem
of inverse heat conduction [8,9].

In this paper, we propose an alternative approach to solving the
inverse heat conduction problem. Laplace transform is used to
obtain the relationship between temperature and heat flux of the
two surfaces. These relationships are given as transfer functions. By
introducing polynomial approximations, we can implement
numerical solutions using SIMULINK. The numerical solutions on
the back surface are used to simulate sensor measurements. With
noise added to the sensor measurement, we investigate whether
the front surface temperature and heat flux can be reconstructed.

In the following section, we specify the heat conduction
problem and simplify the resulting equation through non-dimen-
sionalization. Starting in Section 3, we use Laplace transform to
develop the transfer functions relating the temperature and heat
flux between the front and back surfaces when the back surface
temperature is held fixed. Approximations of the transfer functions
are subsequently obtained through matching poles and zeros. The
approximate transfer functions are implemented in SIMULINK.
Solutions are obtained for prescribed front surface heat flux input.
In Section 4, we add noise to the back surface measurement. We
again use the transfer functions to reconstruct the front surface
heat flux and temperature. In Section 5, we study the transfer
function in the frequency domain to illustrate the reason behind
the difficulty in reconstructing the front surface quantities in the
presence of sensor noise. In Section 6, we obtain the transfer
function for another important boundary condition: the case when
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Nomenclature

cps mass specific heat of the slab, J/(kg K)
G transfer function for the fixed back surface

temperature
H transfer function for the convective back surface

boundary condition
h dimensionless convective heat transfer coefficient
ks thermal conductivity, W/(m K)
L thickness of 1-D slab, m
p pole of a transfer function
q heat flux, W/m2

Q Laplace transform of the heat flux
t time, s
tc characteristic time, s

Ts temperature of the slab above the ambient
temperature, K

U Laplace transform of temperature
x spatial coordinate variable, m
z zero of a transfer function

Greek symbols
rs density of the slab, kg/m3

s dimensionless time
u dimensionless frequency
x dimensionless length variable

Subscripts
b back surface quantity
f front surface quantity
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the back surface has a convective boundary condition. Conclusions
of the present work are given in Section 7.
2. The mathematical model

Consider heat conduction over a finite slab, Fig. 1. Assume that
the solid has a constant thermal conductivity. The governing
equation is given by the following:

rscps
vTs
vt

¼ ks
v2Ts
vx2

(1)

where rs, ks and cps are the density, thermal conductivity and
specific heat of the solid.

Since the one dimensional model here represents an approxi-
mation of a sheet-like three-dimensional body when the temper-
ature gradient along the sheet is ignored, it is thus more intuitive to
regard x ¼ 0 and x ¼ L as the “front” and the “back” surfaces of the
sheet-like solid. Our main interest here is to use the measurements
from the back surface to determine the temperature and the heat
flux on the front surface.

To simplify the problem further, we choose the sheet thickness L
as the characteristic length and the constant

tc ¼ rscpsL
2

ks
(2)

as the characteristic time. Thus we simplify the governing
equation to
)(f τq )(b τq

)(f τT

ξ

0b =T

Fig. 1. Heat conduction over a finite slab. The back surface is assumed to be in contact
with a heat sink.
vTs ¼ v2Ts
2 for 0 < x < 1 (3)
vs vx

where s ¼ t=tc and x ¼ x=L now represent the dimensionless time
and dimensionless position across the thickness.

To obtain the relationships between the measurements on the
front and the back surface, we consider two specific cases. The first
case corresponds to boundary conditions specified on the back
surface. Specifically, we assume that the temperature on the back
surface is maintained at constant while the heat flux is obtained
from a sensor. A constant back surface temperature can be main-
tained through a reservoir containing ice-water mixture. An alter-
native approach is to set up evaporation on the back surface, in
which case the back surface temperature can be adjusted to any
value by adjusting the vapor pressure on the back. In either case, we
have on the back surface, i.e. at x ¼ 1,

Ts ¼ 0 (4a)

� vTs
vx

¼ qb (4b)

where qb is normalized heat flux (K) at the back surface and the
actual back surface heat flux is qbks/L (W/m2).

The second case has convective boundary condition on the back
surface. Namely, at x ¼ 1,

� vTs
vx

¼ hTb (5)

where h is a constant that represents the dimensionless convec-
tive heat transfer coefficient. The convective heat transfer coeffi-
cient for the physical problem is hks/L. For this boundary condition,
the back surface heat flux and temperature are proportional to
each other. When h is large, this case should approach the first
case above.
3. Transfer functions and transient solutions

Applying the Laplace transform [10,11] to equation (3), we
obtain the following equation

sUðxÞ ¼ d2UðxÞ
dx2

: (6)

where UðxÞ is the Laplace transform of Tsðx; sÞ: The solution of the
resulting equation is written as
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U ¼ c1e
ffiffi
s

p
x þ c2e

� ffiffi
s

p
x (7)
)(1 sG
)(f τq )(b τq

)(2 sG
)(f τT

Fig. 2. Simulation block diagram.
Applying the boundary condition (4a), we have

U ¼ c1
�
e

ffiffi
s

p
x � e

ffiffi
s

p ð2�xÞ� (8)

If we let Qf and Qb denote the Laplace transform of the heat flux
at the front and the back surfaces respectively, we have

Qb
Qf

¼
dUðx¼1Þ

dx
dUðx¼0Þ

dx

¼ G1ðsÞ (9)

where

G1ðsÞ ¼ 1
cosh

ffiffi
s

p : (10)

Similarly, let Uf denote the Laplace transform of the front
surface temperature. We obtain

Uf

Qf
¼ Uðx ¼ 0Þ

�dUðx¼0Þ
dx

¼ G1ðsÞG2ðsÞ; (11)

where

G2ðsÞ ¼ sinh
ffiffi
s

p
ffiffi
s

p : (12)

For the heat conduction problem defined above, the back
surface temperature is set to zero. If one more boundary condi-
tion is prescribed, solutions are obtained from the transfer func-
tions. Specifically, if the front surface heat flux, qð0; sÞ, is given, its
Laplace transform, i.e. Qf, is obtained. Consequently, the back
surface heat flux is given by the inverse Laplace transform of the
following:

Qb ¼ G1ðsÞQ f (13)

and the front surface temperature:

Uf ¼ G1ðsÞG2ðsÞQ f : (14)

To obtain the temperature and heat flux in the time domain,
inverse Laplace transform must be found. The analytical form of
the inverse Laplace transform is possible only for a few very
special cases [10,11]. Motivation to our work is to obtain one
quantity from another measured quantity. For example, we are
interested to obtain the front surface temperature from the back
surface heat flux. Therefore, a purely numerical solution is
satisfactory. In the literature, numerical solutions are obtained
through numerical inverse of the transfer function. Because of
the convenience of Laplace transform method for various phys-
ical problems, there are well over 100 different algorithms
available for calculating the inverse Laplace transform [12e15].

In dynamical systems literature, time domain solutions are
obtained from the transfer functions without the explicit inverse
of the Laplace transform. When the transfer functions are
expressed as polynomials, the underlying dynamical systems are
conveniently expressed as ordinary differential equations; time
domain solutions are obtained directly through numerical solu-
tions of the ordinary differential equations [16]. However, the
transfer functions here are not in polynomial forms since they
are derived from a continuous system governed by a partial
differential equation. Approximation to the transfer function
using polynomials, which preserve the poles and zeros, has been
used in dynamical systems to cope with this difficulty [17].
By solving the nonlinear algebraic equation corresponding to
zero denominator for function G1ðsÞ, we obtain the poles of the
transfer function G1(s) at

s ¼ pk ¼ �
�ð2k� 1Þp

2

�2
; k ¼ 1;2;3;. (15)

Setting the numerator of function G2ðsÞ to zero and solving the
resulting nonlinear algebraic equation, we obtain the zeros of the
transfer function G2(s) at

s ¼ zk ¼ �ðkpÞ2; k ¼ 1;2;3;. (16)

Therefore, we have the following approximations for the transfer
functions:

G1ðsÞz
p1p2p3p4p5p6

ðs� p1Þðs� p2Þðs� p3Þðs� p4Þðs� p5Þðs� p6Þ
(17)

G2ðsÞz
ðs� z1Þðs� z2Þðs� z3Þðs� z4Þ

z1z2z3z4
(18)

where up to 6th order terms are kept for G1ðsÞ and up to 4th order
terms are kept for G2ðsÞ. It is easy to keep more terms at the cost of
computation time. However, since the product of these two func-
tions is required in (14), the order of the polynomial in the denom-
inator must be higher than the order of the numerator (Fig. 2).

To understand the limitation of the approximate transfer func-
tions above, we have compared the “gain” and the “phase angle” of
the approximate transfer functions. For u � 20, the graphs of gains
of each transfer function and its approximation exactly overlap.
However, the phase angles of the approximate transfer functions
have more noticeable deviations. These discrepancies are shown in
Fig. 3. For both transfer functions, starting from zero at u ¼ 0, the
phase angle differences increase with the frequency u. Therefore,
the approximation is acceptable if u is small.

As another way to illustrate the validity of the polynomial
approximation to the transfer functions, we examine a special case
for which solution of the heat equation can be obtained analytically.
Consider the casewhen the front surface heat flux is a constant. The
Laplace transform of the heat flux Qf ¼ 1. Therefore, the Laplace
transform of the front surface temperature is the product of the two
transfer functions G1ðsÞ and G2ðsÞ respectively. When polynomial
approximations in (17) and (18) are used as the approximations to
the transfer function, the inverse Laplace transform is easily
obtained. Although the resulting algebraic expression is very
cumbersome, the front surface temperature is plotted as a function
of time. In Fig. 4, we show the front surface temperature obtained
this way superimposed on the analytical solution given below:

Tsðs; xÞ ¼ ð1� xÞq0 þ
XN
n¼1

cne�l
2
nscoslnx (19)

where

ln ¼ �ð2n� 1Þ
2

p; (20)

cn ¼ � 8q0
ð2n� 1Þ2p2

: (21)

Note that the two curves are nearly indistinguishable.
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Fig. 3. Errors of the approximate transfer functions: (a) phase angle of the transfer
functions G1ðjuÞ and its approximation; (b) phase angle of the transfer functions
1=G2ðjuÞ and its approximation.

Fig. 5. Results obtained using SIMULINK when the front surface heat flux is a sinusoid
with a bias.
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To illustrate the simplicity of the solution for time dependent
inputs, we set the front surface heat flux to

qf ðsÞ ¼ 40þ 4sin3s: (22)

The back surface heat flux and the front surface temperature are
easily obtained using SIMULINK. They are shown in Fig. 5. There-
fore, by implementing the approximate transfer functions in
SIMULINK, we can easily obtain transient solutions to the heat
conduction problem.
0 0.2 0.4 0.6 0.8 1
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Fig. 4. Front surface temperature of a slab subjected to constant heat flux on the front
surface. The two indistinguishable curves correspond to the solution from the
approximate transfer function and the analytical solution of the original heat equation.
4. Calculation of the front surface temperature and heat flux
from back surface measurement

The transfer functions we have obtained allow us to reconstruct
the front surface temperature and heat flux from the back surface
measurement. Numerical solutions obtained in the above section
can be used as measured values from the back surface. In order to
show that this method is robust to sensor uncertainties, we add
noise to the back surface heat flux obtained from simulation results
given in the above section. The block diagram is shown in Fig. 6.

Specifically, from the heat flux measurement, we can obtain the
front surface heat flux and temperature since:

Qf ¼ 1
G1ðsÞ

Qb (23)

and

Uf ¼ G2ðsÞQb: (24)

The noise we have introduced into the back surface heat flux is
generated using the “band-limited white noise” generator of
SIMULINK with sampling time of 0.001. The strength of the noise is
quantified by the “noise power”. Since this noise is discontinuous, it
is filtered by a fourth order Butterworth low-pass filter with the
dimensionless cut-off frequency set at 40. The resulting signal is
added to the heat flux solution given in Fig. 5. The back surface heat
flux with noise is shown in the top panel of Fig. 7. Corresponding to
noise power of 0.01, the reconstructed front surface temperature
and heat flux are shown in the bottom two panels of Fig. 7. Since the
transfer functions contain time derivatives, noise becomes much
+)(b τq +
)(2 sG

)(f τT

)(

1

1 sG

)(τn

)(f τq

Fig. 6. Block diagram for the reconstruction of the front surface temperature and heat
flux from the back surface heat flux measurement in the presence of sensor noise.



Fig. 7. Front surface temperature and heat flux reconstructed from the back surface heat
fluxmeasurementwhenanoisewith “noisepower”0.01 is added toback surfaceheatflux.
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more significant in the reconstructed temperature. However, the
reconstructed temperature agrees with that given in Fig. 5 if
appropriate average is applied. The same is not true for the
reconstructed front surface heat flux. Noise overwhelms the
underlying trend. Front surface heat flux can be recovered for much
smaller “noise power”. When the noise power is 0.00001, the
recovered quantities are shown in Fig. 8. From these tests, we see
that heat flux reconstruction is more difficult that the temperature.

5. The frequency response function

In the above section, we have observed that front surface
temperature reconstruction can tolerate more sensor noise. To rule
out the possibility that such an observation is an artifact of the
approximation introduced for the transfer functions, we study the
transfer functions in the frequency domain. This study does not
require that the transfer functions be polynomials. Therefore, no
approximation for the transfer functions is required.

Consider the transmission from the front surface temperature to
the back surface heat flux. Let s ¼ ju where j ¼

ffiffiffiffiffiffiffi
�1

p
we have the

relationship from (24)
Fig. 8. Front surface temperature and heat flux reconstructed from the back surface heat
fluxmeasurementwhenanoisewith “noisepower”0.00001 isadded to theresults inFig.5.
QbðjuÞ
U ðjuÞ ¼ 1

G ðjuÞ (25)

f 2

We use the exact transfer function to obtain the frequency
response function as shown in Fig. 9. We observe that the heat
conduction from the front surface to the back surface is “low-pass”
in nature. High frequency fluctuations are averaged out. Similarly,
we can also obtain the frequency response function representing
the transmission from the front surface heat flux to the back surface
heat flux as follows.

QbðjuÞ
Qf ðjuÞ

¼ G1ðjuÞ (26)

The gain and the phase angle as functions of frequency are
shown in Fig. 10. We note that for this latter case, the gain decays
much faster as frequency increases. In other words, fluctuations in
the front surface heat flux get averaged out as the heat conducts
through the slab. It thus can be expected that reconstructing the
front surface heat flux from the back surface heat fluxmeasurement
does not allow much uncertainties in the sensor measurement.

For conventional sensors such as load cells and accelerometers,
the frequency response function is used to quantify the sensor
dynamic response. Since the signal to be measured may contain
multiple frequencies, the sensor measurement is considered suffi-
ciently accurate within a given frequency range when the gain
remains nearly constant and the phase remains zero. The require-
ment on the phase angle can be relaxed under one circumstance.
If the phase angle of the transfer function is proportional to the
frequency, the sensor is known to introducea “dead” timedelay [18];
a “dead” time delay introduced by the sensor does not distort the
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Fig. 9. Frequency response function QbðjuÞ=Uf ðjuÞ. The function represents the
transfer function from the front surface temperature to the back surface heat flux.
QbðjuÞ=Qf ðjuÞ.
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Fig. 10. Frequency response function QbðjuÞ=Qf ðjuÞ. The function represents the
transfer function from the front surface heat flux to the back surface heat flux.
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Fig. 11. Frequency response functionQbðjuÞ=Uf ðjuÞ. The function represents the transfer
function from the front surface temperature to the back surface heat flux. h ¼ 5.
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Fig. 12. Frequency response functionQbðjuÞ=Qf ðjuÞ. The function represents the transfer
function from the “net” front surface heat flux to the back surface heat flux. h ¼ 5.
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wave form. Therefore, the requirement on the sensor frequency
response can be relaxed to that the gain remains nearly constant and
the phase angle is proportional to the frequency. Examining Fig. 9,
we can roughly say that for 0 < u < 3, the back surface heat flux
measurement can directly be used as the estimation for the front
surface temperature. In Fig. 10, the gain changes more drastically
with the frequency. Perhaps we may regard the gain to be nearly
constant and the phase angle to be nearly linear for 0 < u < 1.
Therefore, the back surface heat flux can be directly used as the
estimation of the front heat flux only for a much lower frequency.

The approach in Section 4 is a method for compensating the
deficiency of the direct measurement results. The compensation is
accomplished based on the knownmathematical model of the heat
conduction problem. The dynamic range is extended since the
transfer functions for reconstructing front surface temperature and
heat flux represent time derivatives. In SIMULINK implementation,
the front surface measurements are obtained based on the back
surface measurement and its time derivatives. The order of poly-
nomial approximations determines the highest order derivatives
that are included. Therefore, the reconstructed front surface
quantities are linear combinations of the back surface measure-
ment and its derivatives. The coefficients of the polynomials
determine the “weights” (proportions) of derivative terms.

The gain in Fig. 10 shows a more steep decrease with frequency
than that in Fig. 9. Consequently, the compensation required to
extend the dynamic range will thus involve more “weights” in the
time derivatives. Numerical derivatives are sensitive to noise.
Reconstructing the front surface heat flux will require more
weights in derivative terms. It is thus not surprising that recon-
structing the front surface heat flux is not possible unless the
sensor noise is small.
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6. Transfer function with convective boundary condition
on the back surface

The second case corresponds to “mixed” boundary conditions
that neither the heat flux nor the temperature is prescribed.
Specifically, this case includes convection boundary conditions:

� vTs
vx

¼ qf at x ¼ 0 (27)

� vTs
vx

¼ hTb at x ¼ 1 (28)

where qf ks=L is the heat flux imposed on the front surface; hks=L is
the convection heat transfer coefficient on the back surface. Note
that on the back surface, the heat flux and the temperature are
proportional to each other.

Substituting (7) into (28), we obtain the following:

U ¼ c1

�
e

ffiffi
s

p
x � hþ ffiffi

s
p

h� ffiffi
s

p e
ffiffi
s

p ð2�xÞ
�

(29)

The following transfer functions are obtained:

Qb
Qf

¼ H1ðsÞ (30)

Uf

Qf
¼ H1ðsÞH2ðsÞ (31)

where

H1ðsÞ ¼ 1

cos h
ffiffi
s

p þ
ffiffi
s

p
h sin h

ffiffi
s

p (32)

and

H2ðsÞ ¼ sin h
ffiffi
s

p
ffiffi
s

p þ 1
h
cos h

ffiffi
s

p
(33)

For the convective boundary condition, the back surface
temperature is no longer a constant. Heat transfer rate through the
slab is lower than the previous case. As shown in Figs.11 and 12, the
gains of the transfer functions decrease as the frequency increases.
Therefore, the front surface temperature or heat flux fluctuations
are in effect “averaged out” through the slab. Reconstructing the
front surface quantities is limited to low frequencies in the pres-
ence of sensor noise. Similar to the previous case, the sensor noise
must be lower still if we wish to reconstruct the front surface heat
flux from the back surface heat flux.

Similar to the previous case, the transfer functions can be
approximated by polynomials which have the same zeros and
poles; the poles and zeros of the transfer functions can be solved
numerically for given values of h. The approximate transfer func-
tions can thus be used to reconstruct the front surface temperature
and heat flux based on the back surface heat fluxmeasurement. We
note that for this boundary condition, the back surface temperature
and heat flux are proportional to each other.

7. Conclusions and discussions

In this paper, we obtained solutions to the heat conduction
problem in terms of transfer functions. These transfer functions,
upon approximation by polynomials, can be used to obtain
numerical solutions for given boundary conditions using tools in
system dynamics such as SIMULINK. With these tools, it is very
convenient to reconstruct the front surface temperature and heat
flux from the back surface measurement. The most practical aspect
of our method is that the front surface temperature can be obtained
in real-time. Consequently, the amount of data processing is greatly
reduced.

Our method is an alternative to methods for the “inverse heat
conduction problem” [1e3]. The method proposed here is much
simpler. Our method is limited to linear problems. However, Lap-
lace transform has been applied to non-homogeneous materials
[19,20] by many investigators; it remains to be seen whether
approximations of transfer functions can provide sufficiently
accurate solutions to these complicated problems.

Finally, our method represents an approach to solving the heat
equation through integral transforms. Such an approach has been
formulated in a systematic fashion in methods known as “thermal
quadrupoles” [21]. The polynomial approximation to the resulting
transfer functions can be combined with the thermal quadrupoles
to result in a complete “system dynamics” approach to the heat
conduction problem.
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